487 research outputs found

    23 years of the discovery of Helicobacter pylori: Is the debate over?

    Get PDF
    The Gram negative curved bacillus H. pylori has become the prize bug of all times. Barry Marshall and Robin Warren the two discoverers of this organism have been awarded with this year's Nobel Prize. The Nobel committee at the Karolinska Institute of Sweden has selected this paradigm shift discovery of 1982 as the most impacting in medical sciences. This award has surprised many as the Nobel assembly has selected this 'Robert Koch styled medical detective work' for the prize as compared to many outstanding basic research stories on the waitlist. This editorial briefly touches the significant impact of H. pylori on gastroduodenal management and the path forward as the bug has become quite controversial in recent times

    Correction: Helicobacter pylori and gastroduodenal pathology: new threats of the old friend

    Get PDF
    Since publication of our article (Ahmed and Sechi: Ann Clin Microbiol Antimicrob 2005, 4:1), we have noticed several errors

    Spirochaetes as intestinal pathogens: Lessons from a Brachyspira genome

    Get PDF
    Anaerobic spirochaetes of the genus Brachyspira have long been known as important gut pathogens of pigs, but increasingly they are recognised as causing disease in birds and other animal species, including human beings. The genome sequence of the major swine pathogen Brachyspira hyodysenteriae was recently published, and this revealed extensive genome optimisation that leads to adaptation to the complex environment of the colon. The genome sequences of other pathogenic and non-pathogenic Brachyspira species are becoming available, and this data will help to reveal how these species have evolved and adapted to varied lifestyles in the large intestines of different species, and why some but not others can induce colitis and diarrhoea

    Genomics of Mycobacterium tuberculosis: old threats & new trends

    Get PDF
    Tuberculosis (TB) has been declared as a global health emergency by the World Health Organization (WHO). This has been mainly due to the emergence of multiple drug resistant strains and the synergy between tubercle bacilli and the human immunodeficiency virus (HIV). Genomic analysis of strains for outbreak investigations is in vogue for about a decade now. However, information available from whole genome sequencing efforts and comparative genomics of laboratory and field strains is likely to revolutionize efforts towards understanding molecular pathogenesis and dissemination dynamics of this dreaded disease. Genomic information is also going to fuel discovery projects where new targets will be identified and explored towards a new drug for TB. Besides this, efforts of information technologists, chemists, population biologists, freelance workers, media persons, non-governmental organizations and administrators to needed to handle the problem of tuberculosis to prevent it from becoming a pandemic

    Helicobacter pylori and gastroduodenal pathology: New threats of the old friend

    Get PDF
    The human gastric pathogen Helicobacter pylori causes chronic gastritis, peptic ulcer disease, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. It infects over 50% of the worlds' population, however, only a small subset of infected people experience H. pylori-associated illnesses. Associations with disease-specific factors remain enigmatic years after the genome sequences were deciphered. Infection with strains of Helicobacter pylori that carry the cytotoxin-associated antigen A (cagA) gene is associated with gastric carcinoma. Recent studies revealed mechanisms through which the cagA protein triggers oncopathogenic activities. Other candidate genes such as some members of the so-called plasticity region cluster are also implicated to be associated with carcinoma of stomach. Study of the evolution of polymorphisms and sequence variation in H. pylori populations on a global basis has provided a window into the history of human population migration and co-evolution of this pathogen with its host. Possible symbiotic relationships were debated since the discovery of this pathogen. The debate has been further intensified as some studies have posed the possibility that H. pylori infection may be beneficial in some humans. This assumption is based on increased incidence of gastro-oesophageal reflux disease (GERD), Barrett's oesophagus and adenocarcinoma of the oesophagus following H. pylori eradication in some countries. The contribution of comparative genomics to our understanding of the genome organisation and diversity of H. pylori and its pathophysiological importance to human healthcare is exemplified in this review

    Genetic affinities within a large global collection of pathogenic <i>Leptospira</i>: implications for strain identification and molecular epidemiology

    Get PDF
    Leptospirosis is an important zoonosis with widespread human health implications. The non-availability of accurate identification methods for the individualization of different Leptospira for outbreak investigations poses bountiful problems in the disease control arena. We harnessed fluorescent amplified fragment length polymorphism analysis (FAFLP) for Leptospira and investigated its utility in establishing genetic relationships among 271 isolates in the context of species level assignments of our global collection of isolates and strains obtained from a diverse array of hosts. In addition, this method was compared to an in-house multilocus sequence typing (MLST) method based on polymorphisms in three housekeeping genes, the rrs locus and two envelope proteins. Phylogenetic relationships were deduced based on bifurcating Neighbor-joining trees as well as median joining network analyses integrating both the FAFLP data and MLST based haplotypes. The phylogenetic relationships were also reproduced through Bayesian analysis of the multilocus sequence polymorphisms. We found FAFLP to be an important method for outbreak investigation and for clustering of isolates based on their geographical descent rather than by genome species types. The FAFLP method was, however, not able to convey much taxonomical utility sufficient to replace the highly tedious serotyping procedures in vogue. MLST, on the other hand, was found to be highly robust and efficient in identifying ancestral relationships and segregating the outbreak associated strains or otherwise according to their genome species status and, therefore, could unambiguously be applied for investigating phylogenetics of Leptospira in the context of taxonomy as well as gene flow. For instance, MLST was more efficient, as compared to FAFLP method, in clustering strains from the Andaman island of India, with their counterparts from mainland India and Sri Lanka, implying that such strains share genetic relationships and that leptospiral strains might be frequently circulating between the islands and the mainland

    Helicobacter pylori - a seasoned pathogen by any other name

    Get PDF
    Helicobacter pylori is a well known inhabitant of human stomach which is linked to peptic ulcer disease and gastric adenocarcinoma. It was recently shown in several studies that H. pylori can be harnessed as a surrogate marker of human migration and that its population structure and stratification patterns exactly juxtapose to those of Homo sapiens. This is enough a testimony to convey that H. pylori may have coevolved with their host. Several protective effects of H. pylori colonization have been considered as evidence of a presumed symbiotic relationship. Contrary to this assumption is the presence of a strong virulence apparatus within H. pylori; why a co-evolved parasite would try inflicting its host with serious infection and even causing cancer? The answer is perhaps embedded in the evolutionary history of both the bacterium and the host. We discuss a hypothetical scenario wherein H. pylori may have acquired virulence genes from donors within its environment that varied with change in human history and ecology. The H. pylori genomes sequenced to date portray fairly high abundance of such laterally acquired genes which have no assigned functions but could be linked to inflammatory responses or other pathogenic attributes. Therefore, the powerful virulence properties and survival strategies of Helicobacter make it a seasoned pathogen; thus the efforts to portray it as a commensal or a (harmless) 'bacterial parasite' need rethinking

    Mycobacterium tuberculosis DosR Regulon Gene Rv2004c Encodes a Novel Antigen with Pro-inflammatory Functions and Potential Diagnostic Application for Detection of Latent Tuberculosis

    Get PDF
    Approximately 1.7 billion people in the world harbor latent Mycobacterium tuberculosis (Mtb) with a substantial risk of progression to clinical outcome. Containment of these seed beds of Mtb is essential to eliminate tuberculosis completely in high burden settings such as India. Hence, there is an urgent need for the identification of new serological markers for detection or vaccine candidates to prevent latent tuberculosis infection (LTBI). DosR regulon antigens of Mtb might serve as attractive targets for LTBI diagnosis or vaccine development as they are specifically expressed and are upregulated during latent phase. In this study, we investigated the role of Rv2004c, a member of DosR regulon (exclusive to Mtb complex), in host–pathogen interaction and its immunogenic potential in LTBI, active TB, and healthy control cohorts. Rv2004c elicited strong antibody response in individuals with LTBI compared to active TB patients and healthy cohorts. Recombinant Rv2004c induced pro-inflammatory cytokine response in human peripheral blood mononuclear cells and THP-1 cells via NF-ÎșB phosphorylation. Interaction of Rv2004c with toll-like receptor (TLR)-2 was confirmed using HEK-Blue hTLR-2 and pull-down assays. Rv2004c enhanced the surface expression of TLR-2 at mRNA and protein levels in THP-1 cells. Our findings revealed that Rv2004c induces strong humoral and cell mediated immune responses. Given these observations, we propose Rv2004c to be a potential diagnostic marker or an attractive vaccine candidate that can be useful against LTBI
    • 

    corecore